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The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-
principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of
the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with
the density-functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron
density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage
characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred
atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which
make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms.
Our first algorithm offers an alternative to the usual evaluation of the equilibrium part of electron density via
numerical contour integration of the retarded Green function in the upper complex half-plane. It is based on the
replacement of the Fermi function f(E) with an analytic function f(E) coinciding with f(E) inside the integra-
tion range along the real axis, but decaying exponentially in the upper complex half-plane. Although f(E) has
infinite number of poles, whose positions and residues are determined analytically, only a finite number of
those poles have non-negligible residues. We also discuss how this algorithm can be extended to compute the
nonequilibrium contribution to electron density, thereby evading cumbersome real-axis integration (within the
bias voltage window) of NEGFs which is very difficult to converge for systems with large number of atoms
while maintaining current conservation. Our second algorithm combines the recursive formulas with the geo-
metrical partitioning of an arbitrary multiterminal device into nonuniform segments in order to reduce the
computational complexity of the retarded Green function evaluation by extracting only its submatrices required
for electron density and transmission function. We illustrate fusion of these two algorithms into the NEGF-
DFT-type code by computing charge transfer, charge
zigzag-GNR | variable-width-armchair-GNR | zigzag-GNR two-terminal device covered with a gate electrode
made of graphene layer as well. The total number of carbon and edge-passivating hydrogen atoms within the
simulated central region of this device is =7000. Our self-consistent modeling of the gate voltage effect
suggests that rather large gate voltage =3 eV might be required to shift the band gap of the proposed AGNR
interconnect and switch the transport from insulating into the regime of a single open conducting channel.
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I. INTRODUCTION

The recent discovery of graphene!>—a single layer of
graphite  representing  first  truly  two-dimensional
crystal>—has  opened new avenues for  carbon
nanoelectronics.*> The limits on continued scaling of present
silicon-based electronics are set by the fundamental physical
effects (such as quantum tunneling of carriers through the
gate insulator and through the body-to-drain junction; depen-
dence of the subthreshold behavior on temperature; and dis-
crete doping effects) where the most detrimental one is
power dissipated in various leakage mechanisms.® This is
especially dangerous for minimal field-effect transistor
(FET) dimensions and oxide thicknesses. Following the dis-
covery of carbon nanotubes (CNTs), which are rolled up
sheets of graphene, the exploration of carbon nanoelectronics
over the past decade as a strong contender to aging silicon
technology has been centered around semiconducting CNTs
as the new type of channel for FET that also makes possible
unconventional transistor designs.*

Single-wall CNTs bring their unique features into nano-
electronics arena, such as ballistic transport or diffusion with
very long mean free paths, high mobility at room tempera-
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ture due to suppressed electron-acoustic-phonon scattering,
current carrying capacities of the order of 10° A/cm?, and
one of the largest known specific stiffness.* However, full
integration of CNTs into complex high-performance nano-
electronic devices has been thwarted by several unresolved
issues, such as: (i) electronic inhomogeneity where random
mixture of semiconducting and metallic CNT (due to uncon-
trolled distribution of diameters and chirality in current syn-
thesis methods) degrade device performance; (ii) difficulty in
aligning and patterning through standard lithography meth-
ods suitable for high-volume production because of CNTs
not being flat; and (iii) extreme sensitivity to minute changes
in their local chemical environment.’

Graphene shares many of the features of CNT, offering
large critical current densities® and intrinsic mobility limit
=2X10° cm?/Vs at room temperature being higher than
any of the known inorganic semiconductors.® Such high mo-
bility promises near-ballistic transport and ultrafast switch-
ing. Thus, from its inception,® application of graphene in
FET devices has been a major experimental endeavor.'®!!

However, all graphene-FETs fabricated with wide
sheets'®!! have poor ratio of on-state current I, to off-state
current I due to the bulk graphene samples behaving as a
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zero-gap semiconductor. Nevertheless, recent breakthrough
fabrication (via chemical derivation,'> STM tip drawing'?® or
CNT unrolling'*!3) of sub-10-nm-wide graphene nanorib-
bons (GNRS), all of which are semiconducting, has led to the
development of GNRFETSs (Ref. 16) with I,,/I ratio up to
=10° which is suitable for logic devices.

Moreover, unusual band structure of graphene has gener-
ated a plethora of proposals to create devices that have no
analog in silicon-based electronics. The new functionality
brought by the GNR electronic structure,!” such as “valley
valves'®” or difference in transmission properties of reflec-
tionless 120° and highly reflective 60° turns made of GNRs
with zigzag edges,!® can only be captured by quantum trans-
port analysis. At the same time, equilibrium interatomic
charge transfer and chemical doping by different atoms?*-2?
or atomic groups?® that passivate GNR edges require to
model explicitly atomistic structure and corresponding
charge density within the device. These tasks are beyond the
scope of popular tight-binding models'®>*?* (projected onto
the basis of single p, orbital per carbon atom), or even sim-
pler continuous Weyl Hamiltonian describing massless Dirac
fermions as low-energy quasiparticles close to the charge
neutrality point.> Furthermore, in the nonequilibrium state
driven by the finite bias voltage one has to compute self-
consistently charge redistribution and the corresponding
electric potential in order to keep the gauge invariance®® of
the I-V characteristics®’ intact.

Finally, virtually every experiment on graphene employs
gate electrodes to move the Fermi level away from the
charge neutrality point or shift conduction from electron to
hole carriers, so that self-consistent computation of the inho-
mogeneous charge distribution?®-3 induced by the gate volt-
age and its highly nontrivial effects on the band structure of
GNRs (Refs. 28, 30, and 31) is necessary to understand de-
vice performance (rather than using unrealistic constant shift
of the on-site potential to simulate the presence of the gate
electrode in the simple tight-binding models'8).

Thus, the prime candidate capable of handling all of these
issues within a unified quantum transport framework3>33 is
the nonequilibrium Green function (NEGF) formalism3*
combined with the density functional theory (DFT) in stan-
dard approximation schemes® (such as LDA, GGA, or
B3LYP) for its exchange-correlation potential. The sophisti-
cated algorithms**~*> developed to implement the NEGF-
DFT framework over the past decade can be encapsulated by
the iterative self-consistent loop,>*

n"(r) = DFT — Hgg[n(r)] = NEGF — n®(r). (1)

The loop starts from the initial input electron density n™"(r)=
employs some standard DFT code® (typically in the basis set
of finite-range orbitals for the valence electrons which allows
for faster numerics and unambiguous partitioning of the sys-
tem into “central region” and the semi-infinite ideal leads) to
get the single particle Kohn-Sham Hamiltonian Hgg[n(r)]=
—h2V22m+ V() [V(r) = Vy(r)+ Vi (r)+ Vo (r) is the
DFT mean-field potential due to other electrons where V(r)
is the Hartree, V,(r) is the exchange-correlation, and V,(r)
is the external potential contribution] = inversion of
Hgg[n(r)] yields the retarded Green function G'(E) whose
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integration over energy determines the density matrix via
NEGF-based formula,

1
p=-_ f dE Im[G"(E)f(E - pur)

—00

IR GRS MG LI

—00

_f(E - ILLR)] = peq + pneq' (2)

The matrix elements n°"(r)=(r|p|r) are the new electron
density as the starting point of the next iteration. This proce-
dure is repeated until the convergence criterion ||p°"—p™||
< §'is reached, where 6<<1 is a tolerance parameter.

The representation of the retarded Green function in the
local orbital basis requires to compute the inverse matrix

G'(E) =[E - Hgg[n(r)] - 2(E)]™. 3)

The advanced Green function matrix is defined as GY(E)
=[G’(E)]". The non-Hermitian matrix 3(E)=3,(E)+3x(E)
is the sum of the retarded self-energy matrices introduced by
the “interaction” with the left [X,(E)] and the right [ z(E)]
leads. These self-energies determine escape rates of electrons
from the central region into the semi-infinite ideal leads, so
that an open quantum system can be viewed as being de-
scribed by the (non-Hermitian) Hamiltonian —He,
=Hgg[n(r)]+X(E).

The NEGF postprocessing of the converged result of DFT
calculations makes it possible to obtain the current through a
two-terminal device in terms of the Landauer-type formula*

2e (7
I(Vdv) = fj dET(E’ Vds)[f(E - /-LL) _f(E - /-LR)] (4)

This integrates the self-consistent transmission function
T(E,Vy) = THUR(E, V)G T (E, V)G g} (5)

for electrons injected at energy E to propagate from the left
to the right electrode under the source-drain applied bias
voltage u;—ug=eV,. Here G, is the submatrix of G”

whose elements <S|é’|1) connect orbitals in the first lead
supercell (layer denoted as 1) of the extended central region
“sample+portion of the electrodes” to the last lead supercell
(layer denoted as S) of the simulated region.

The matrices I‘L,R(E)=i[2L7R(E)—ELR(E)]:
-2 Im X ¢(E) account for the level broadening due to the
coupling to the leads.>* A usual assumption about the leads is
that the effect of the bias voltage can be taken into account
by a rigid shift of their electronic structure, so that
2 R(E, V) =2 R(E¥FeV4,/2,0) and I r(E, Vyy)
=I'; R(E¥eV,4/2,0) are computed in equilibrium and then
the shift =eV,/2 is applied to their electronic structure to
mimic the applied bias. The energy window for the integral
in Eq. (4) is defined by the difference of Fermi functions
JE=u;)—f(E—ug) of macroscopic reservoirs into which
semi-infinite ideal leads terminate. The formula (4) is valid
only for coherent transport, i.e., assuming absence of
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dephasing®’ due electron-phonon or electron-electron inter-
actions (beyond those captured by the mean-field
treatment*>40).

Thus, the most demanding computational task of the
NEGF-DFT framework is the self-consistent evaluation of
the density matrix p whose different algorithmic steps have
the following®? computational complexity*® in terms of the
number of atoms N (Ref. 49): (i) the computation n™"(r)
— Vefi(r) of the effective potential for Hyg[n(r)] has com-
plexity O(NlogN); (ii) the second step, V*i(r)
— Hgg[n(r)], has complexity O(N); (iii) computation of all
elements of the retarded Green function, Hyg[n(r)]— G, re-
quires O(N?) operations; (iv) G"— p scales as O(N); and (v)
the final step p— n°"(r) also has complexity O(N). Obvi-
ously, the bottleneck is set by the retarded Green function
computation. Since NEGF-DFT computational codes3®-4244
are developed and tested for small molecules attached to me-
tallic electrodes (where they are successful when coupling
between the molecule and the electrodes is strong enough to
diminish Coulomb blockade effects?), they typically evalu-
ate all elements of G” by inverting through Eq. (3) the
Hamiltonian of the extended molecule region. Because this
has to be done repeatedly through self-consistent loop [Eq.
(1)], the number of atoms in the extended central region
“molecule+portion of the electrodes” that can be simulated
is limited to few hundreds. This bottleneck also prevents
realistic modeling of single or multiple’®® gate electrodes—
instead of an additional layer of atoms covering portion of
the central region, one typically employs a uniform electric
field in the direction perpendicular to the transport.>!->

A more subtle reason for the failure of conventionally
implemented NEGF-DFT codes when applied to systems
containing large number of atoms is the integration in the
second term p,, in Eq. (2) which must be performed along
the real axis since the integrand is not analytic anywhere in
the complex plan. Although this integration is restricted by
the Fermi functions to a segment of the order of the applied
bias voltage, a very fine integration grid must be used to
capture locations of subband edges (introduced by semi-
infinite leads) and broadened molecular orbitals where sharp
peaks in the integrand occur. This problem is exacerbated in
devices containing large number of atoms where the increas-
ing number of such sharp peaks—due to van Hove singulari-
ties in the density of states of the leads or quasibound states
present when different contacts throughout the device are not
perfectly transparent—can make it virtually impossible to
CONVErge Preg-

The present approach in NEGF-DFT algorithms to deal
with this issue is to move the line of integration slightly into
the complex plane. However, this effectively adds small
imaginary part i7 to the Hamiltonian H,,., which, therefore,
does not conserve current. For example, direct application of
this procedure to experimental graphene devices, such as 100
nm long GNRFET of Ref. 16, would lead to substantial dif-
ference between the total current in the left and the right
leads. This issue is rarely discussed in the usual NEGF-DFT
treatment of transport through relatively short molecules
where such violation of current conservation is small.

Some recent attempts to solve it, such as locating the
peaks due to quasibound states and patching the nonequilib-
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rium density matrix integral,>>>* cannot be applied to large

systems with many such peaks. The peaks can be broadened
by physical dephasing mechanisms due to
electron-electron*# or electron-phonon interactions,*’ but
this drastically changes the NEGF-DFT approach by requir-
ing additional and computationally very expensive self-
consistent loops to calculate extra  self-energy
functionals***34¢ due to interactions within the device for
which the sparsity of the Hamiltonian matrix Hg,e, becomes
irrelevant.

Recent efforts’>3-38 to replace some of the algorithms
within the NEGF part of the NEGF-DFT scheme, such as
unfavorable computational complexity of the brute force ma-
trix inversion®=>7 or the real-axis integration®>* in p,q,
have still not led to self-consistent electron density and trans-
port calculations for systems composed of more than about a
thousand of atoms.”® Here we introduce modified NEGF-
DFT scheme which is based on our novel algorithm for the
integrations in Eq. (2) combined with the partitioning the
nanostructure of arbitrary shape into slices containing much
smaller number of atoms. The Green function matrices of
these slices, needed to obtain the electron density within the
slice, are computed recursively with much more favorable
computational complexity than O(N?). The number of itera-
tion steps within the self-consistent loop is further reduced,
in the case of nanodevices in equilibrium or in quasiequilib-
rium situations (e.g., due to by nonzero gate voltage and zero
or linear response bias voltage), via modified Broyden mix-
ing scheme for input and output charge density. We demon-
strate the capability of our computational code, termed
CANNES (carbon nanoelectronics simulator), to treat multi-
terminal structures containing large number of atoms by
computing the self-consistent electron density and conduc-
tance in the presence of the gate voltage in a graphene nan-
odevice whose extended central region is composed of
=7000 carbon and hydrogen atoms.

The paper is organized as follows. Sec. II elaborates on
the “pole summation” algorithm for computing integrals in
p. In Sec. III we demonstrate efficiency of our approach by
setting up a three-terminal FET-type device whose source
and drain electrodes are made of zigzag graphene nanoribbon
(ZGNR) while its channel is an armchair GNR (AGNR) of
variable width and with sizable energy gap. The third elec-
trode is gate modeled as a rectangularly shaped layer of car-
bon atoms covering the FET channel. The dangling bonds of
all-graphene layers are terminated by hydrogen atoms. The
DFT part of the calculation is carried out using the self-
consistent environment-dependent tight-binding model (SC-
EDTB) with four orbitals per carbon atom and one orbital
per hydrogen atom, which is specifically tailored to simulate
eigenvalue spectra, electron densities and Coulomb potential
distributions for carbon-hydrogen nanostructures.’>® The
combination of “pole summation” algorithm with the recur-
sive Green function formulas allows us to compute in Sec.
IIT intricate electric potential distribution in the space around
ZGNR-AGNR-ZGNR FET device, as well as to demonstrate
how much voltage has to be applied on the gate electrode to
push the device from the off-state due to the gap of AGNR
into an on-state enabled by a single transport channel cross-
ing the Fermi level. The computed source-drain conductance
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as a function of the gate voltage also demonstrates that even
at zero gate voltage there is a difference between the non-
self-consistent and self-consistent conductance, where the
latter takes into account charge transfer between different
atomic species or different segments of the device. We con-
clude in Sec. IV.

II. SELF-CONSISTENT ALGORITHMS FOR
ELECTRON DENSITY

We start by rewriting the equilibrium contribution to the
density matrix (2),

1
peq(lLL’ T) == ;f

E,

+o0

dE Im[G"(E)[f(.T.E),  (6)
in the form which emphasizes its dependence on the chemi-
cal potential w and temperature 7, as well as that the lower
limit of integration is the lowest energy at which
Im[G"(E;)]#0. As long as the end-point E.;, is
selected®’** below the bottom of the valence band edge,
there is no further contribution to the integrand, and thus the
expression is exact. Although this looks obvious, it is impor-
tant to point out that if the value |E,,,| is too small, and there
are states left outside of the contour, the corresponding states
will not be included in the integration. This causes charge to
erroneously disappear from the system, which typically ini-
tiates an avalanche effect, pushing the energy levels even
further out, and even more charge is lost, until the system is
totally void of electrons. When this occurs, the calculation
will actually converge trivially, but to a physically incorrect
solution.

Since diagonal matrix elements of G'(E) are a rapidly
varying function of energy, a direct integration along the real
axis would be rather ineffective since its numerical accuracy
is not sufficient to achieve convergence of the self-consistent
electron density. Instead, present NEGF-DFT computational
codes3®3744 deform the integration contour into the upper
complex half-plane Im[E]>0, where the retarded Green
function is much smoother. This is allowed since G'(E) is
analytic in the upper complex half-plane (all of its poles are
slightly displaced below the real axis).

The thick white line in Fig. 1 designates typically
chosen3®374044 integration contour. It consists of a semicir-
cular part SC and a horizontal line L parallel to the real axis
on the right which is positioned to enclose specific number
Nopores Of the Fermi function poles 7" while ensuring that SC
and L are sufficiently far away from the real axis so that the
Green function is smooth over both of these two segments
[the main variation of the integrand on L comes from the
Fermi function f(E) which, therefore, can be used as a
weight function in the quadrature’”#4]. The final expression
for p,, obtained in this procedure (using the Cauchy residue
theorem for the closed contour SC+L+vertical segment
from L to the real axis+portion of the real axis) is

1
Peg=——Im f dzG"(2)f(w,T,z)
™ SC+L

N,

poles

—2mikgT >, G'(z™) |, (7)

where the smoothness of G"(E) on SC+L contour is ex-
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FIG. 1. (Color online) The density plot of the absolute value of
f(E) in the upper complex half-plane. Lighter color denotes greater
value of |ﬂ Solid black corresponds to zero, while gray color inside
the dotted rectangle represents unity. White dots denote the poles
with their size being roughly proportional to the absolute value of
the residue. Poles running along AB, BC, and CD edges of the
rectangle correspond to 7, Z(I;Q , and Z(R”e) , respectively. Thick white
curve denotes the integration contour traditionally used in NEGF-
DFT computational codes (Refs. 37 and 44). Top insets are three-
dimensional (3D) plots of Re[f] and Im[f] in the upper complex
half-plane.

ploited to perform the approximate integration in the first
term by using a quadrature with a small number of
points. 374

Obviously, it would be highly advantageous to be able to
compute integral in Eq. (6) precisely and without worrying
about proper selection of parameters for positioning SC and
L, via a simple summation over a finite set of complex ener-
gies akin to the second term of Eq. (7). Here we introduce
such an algorithm which makes possible virtually exact
evaluation of p, by “pole summation.” This algorithm is
discussed separately for high temperatures (and/or valence
electrons) in Sec. IT A and for low temperatures (and/or core
electrons) in Sec. II B.

A. High temperature and/or valence electrons

The algorithm for equilibrium density matrix computation
discussed in this Section can be used when the inequality

(= Epin)kpgT < 10°, (8)

is satisfied. If Eq. (8) is not satisfied, a slightly more elabo-
rate algorithm described in the next Sec. II B is needed. Let
us define the desired precision through the non-negative
number p, such that the magnitude of the relative error is &
=e7”. In most cases the machine precision roughly corre-
sponds to p=30, while the practical range of p is usually
between 21 and 27.

We start by introducing a function f
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f(/-l” IaRe’ ﬁlm’ T’ TRe’ Tlm’E) =f(ilalm’ iTIm’E) X [f(/‘l” T’ E)

_f(laRe»TRe»E)]’ (9)

where all its arguments except E are limited to real domain
and satisfy the following inequalities (kz is the Boltzmann
constant and *=-1):

Tpe>0, Tp,,>0, (10a)
:izRe mm pkBTRe’ (10b)
i = Pk (10c)

The choice of parameters given by Eq. (10) guarantees that
for real E=E,;, the function ]7 deviates from f by no more

than o. Therefore the replacement of f with f in the integrand
of Eq. (6) will result in the relative error less than 8. In the
following we assume that p=21 so that §=107°.

Thus, for all practical purposes we can state that (all ar-
guments except E are omitted for brevity)

™

Peq =~ llm{ fw dEG’(E)f(E)] . (11)

The poles and residues of the first term in the product on the
right-hand side of Eq. (9) are given by

Zgln) =iy + WkBTIm(zn +1), (12a)
ReS[f(i Bty i Tions 2 ]:=) = = ik Ty (12b)

where n is an integer. Similarly, the poles and residues of
f(u,T,E) in the second term are

2 = u+ wikyT(2n + 1), (132)
Res[f(u,T,2)],—.00 = — kgT, (13b)

and for f(,aRe,TRe,E) they are
2R = fige + ikpTre(2n + 1), (14a)
Res[ f(fires Tres2)z-z) = = Ky Te- (14b)

Inequalities (10) provide sufficient freedom to prevent the

coincidence of the poles z%), Z™, and Z2) (V j, m, and n).

Thus, f only has first-order poles with residues given by

Res[.f(Z)]z=Z<I:;) == ikTIm X [flu, T,?IQ) — f(jARes TRe’Zg;))]’

(15a)
Res[f(z2) ],o,t0 = — kpTf(i s i Ty 2™) (15b)
Res[f(z)]z=f(;e) kBTf(llu“Im’lTIm’ZRe) (15C)

In the upper complex half-plane the residues [Eq. (15a)] de-
cay exponentially if Re(z") lies outside the interval
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[ ige» ], and the residues [Egs. (15b) and (15¢)] decay ex-
ponentially if the imaginary component of the poles z or
2(1{2 exceeds iy, Thus, for any given p only the limited num-
ber of poles {Z;}, j € {1, N} have non-negligible residues.

If one replaces the real-axis integration in Eq. (11) by the
integration along the semicircular contour of the sufficiently
large radius in the upper complex half-plane, the contour
contribution to the integral is zero, and the contribution from
the poles is solely from {Z;}. The integral (11) is computed as
the sum over all nonzero residues,

N, pole

Peq=— lIm > 2mi Res[f(z)]. ZG’(Z) (16)

an j=1

where the set {Z;} is comprised of only those {Z{")}, {z"}, and
{Zih poles which satisfy

(T2 = (g = TreZm = €™, (17a)
lf(ilalm’i’flm’z(n)n = e—p’ (17b)
V(iﬁlm’lTIm7ZRe)| = e—p (17C)

respectively, in order to keep the relative error below e7™”.
For values of E,;, and T obeying the inequality (8) and
21=p=30 the number of relevant poles N, is moderate.
For example, it is safe to chose E,;,=—27 eV for valence
electrons in a hydrocarbon system (note that this value for
E.;, is measured from the vacuum level). Then, at room
temperature the ratio [Eq. (8)] is around 700, and for p=21
the minimal number of required poles for parameters satis-
fying Eq. (10) equals 76. Decreasing p down to machine
precision raises the minimal number of poles to 96.

Figure 1 shows the density plot of f corresponding to p
=21 and E,;,=-27 eV used to compute self-consistent elec-
tron within the graphene nanodevice example of Sec. III. The
minimal number of poles N, is obtained as follows. We

consider Tlm and TRe as free parameters, and the minimum
allowed g, and fy, are obtained from equalities in con-
straints imposed by Eq. (10). Then, the number of poles z
is approximately twice the value of i, divided by the inter-
pole distance

2la:lm
2mkyT’

NAB= (18)

and the approximate numbers of poles along the lines CB
and DC in Fig. 1 are

= fige + pkpTye + PkBT

Nep= (19a)
qukBTIm
2 flam
NDC: MI~ 5 (]9b)
27TkBTRe

respectively. The optimal values of Tlm and TRE are obtained
by minimizing Np,e=Ngp+Ncp+Npc in the space of these
two parameters. A small TRe and gy, adjustment, subject to
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FIG. 2. (Color online) The poles with nonzero residues for the
same system shown in Fig. 1 but at kz7=0.003 eV: (a) poles of f;
(b) poles of F@: and (c) poles of F®. Circular zoomed-out regions
depict dense pole arrangement at energies close to the chemical
potential .

constraints [Eq. (10)], is made afterward to place the line CD
right in between the two poles on lines AB and DC (cf. Figs.
1 and 2). This is done to ensure that the poles are not too
close to each other, otherwise a large numerical errors may
occur.

B. Low temperature and/or full core simulations

The minimum number of poles N, is scaled by the tem-
perature and the energy interval u— g.. In order to reduce
N, 1t is desirable to have as large spacing between the

p o~
poles Z(h"n) as possible. According to Eq. (10¢), increasing Ty,

for the given p means the increase in f,. The increase in
M in turn increases the length of the segment AB, and
hence the number of poles z” to be summed. On the other
hand, reducing the number of z (i.e., decreasing |AB]
=), Will bring the line BC closer to the real axis, so to
prevent deviation of f from f on the real axis requires to
decrease Tlm. The latter increases the number of poles E(I”m)
along the line BC.

The simple solution to this problem is to break the inter-
val between r. and w into several subintervals, and apply
the scheme presented in Sec. II A to each subinterval. For
example, if the original interval is split into two subintervals,
one needs to replace f with ﬁ(z)’ which is the sum of two

functions f
F(2)(IL'L’ laRell’ /-’Zlml’z’ T’ TRel,z’ TIml’z’E)
= f(lu" IZ:':Re1 > /:ZIm] ’ T’ TRe1 ’ Tlm1 ’E)
+ f(ﬁRel > ﬂRez’ ﬁlmz’ TRel’ TReza TlmzaE) s (20)

where T< TRe < TRez ,LLRez< 'U“Rel <u; and @ M, < ,U~1m The

parameters /'LRel ) ,ulml ) TRel ) and TIm ensure the required
precision by satisfying the constraints similar to Eq. (10),

:l’zRe2 = Emin _pkBTRez’ (213)
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,alm1 = pkBTIm . ,alm2 = pkBTIm2- (21b)

Figure 2(b) illustrates these concepts. Poles forming the left
(smaller) and the right (bigger) rectangles are associated re-
spectively with the first and the second term in Eq. (20). The
poles running along the line DD, are the same for the first
and second term in Eq. (20).

The minimization of the total number of poles N is

performed analogously to Eqs (18) and (19). For F? the

optimization parameters are TRe , TRe , TIm , and TIm The
starting point for the conJugate gradlent m1n1m1zat10n is
TRC' =10X T and ﬁ1m2= 10 X ,leml, so that the optimized pa-
rameters fit this order of magnitude relationship. Indeed, the
size of the integration intervals in Figs. 2(b) and 2(c) in-
creases by an order of magnitude from right to left. For this
reason Np,. grows logarithmically with increasing ratio (u
—E i)/ kgT. That is, depending on p, approximately 30 to 40
extra poles are required for each decade of this ratio increase
(i.e., per order of magnitude in temperature reduction).

C. Approximate real-axis integration of nonanalytic functions

The concepts presented in Sec. II A allow for efficient and
exact evaluation of the G'(E) moments in the interval
bounded by two Fermi functions. This property can be used
for systematic approximation of G%(E) with the function
G“(E) such that G*(E) = G*(E) on the real axis, and which is
analytic in the upper complex half-plane. This approximation
can be used to transform the nonanalytic integrands to ana-
lytic functions.

Obvious applications of this idea to NEGF-DFT frame-
work would be the computation of nonequilibrium contribu-
tion Py, to the density matrix in Eq. (2). Because the func-
tions G'(E) and G“(E) in the integrand of p,., are
nonanalytic below and above the real axis, respectively, the
integrand is nonanalytic function in the entire complex en-
ergy plane. Thus, no integration contour deformation akin to
Fig. 1 can be exploited to avoid direct integration along the
real axis to obtain pp.q. On the other hand, such direct inte-
gration along the real axis is computationally expensive due
to the need for very fine integration grids.>>3* As discussed
in Sec. I, integration may not even converge when the inte-
grand becomes too spiky with numerous closely spaced
sharp peaks for devices containing large number of atoms.

Let us divide the interval [ ug, i, | into M subintervals of
equal size Au

Ho= MR, My = Mp, My = Mg+ mAuQ, (22)

where we assume for simplicity that Au=2kzT. Then p,, in

Eq. (2) can be rewritten as
dEG'(E) - Im[2(E)] - GY(E)

Preq = E

X [f(lu’m’T7E) _f(lu’m—l’T’E)]' (23)

For each interval [ u,,_;, &,,] in the sum (23) we approximate
G'(E) by the power expansion with respect to the deviation
from the center of the interval &,=(,,_;+ &) /2

400
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FIG. 3. (Color online) Poles of the function

Ftns ot » > T2 T, Tim»2) used to evaluate the integral in Eq.
(26). For a chosen precision set by p=23, the contribution from 28
poles has to be summed. Three poles of f(u,,,T,z) are marked with
the red empty circles. The values of the retarded Green function at
most of the poles shown are reused to compute matrices Mgld) in Eq.
(25) for n# m, so that the average number of Green functions to be
computed per interval equals 3.

K
G.(E) = G/(E)= >, g% X (E-&,)", (24)
k=0

(x)

where g,

are constant matrices. We require that the mo-

ments M'? up to order K for G”, and G/, coincide

M = f " AEGHE)E - &) X [t T, )~ iy T )]

-0

+% K
= f dED g X (E-&,)

k=0

X [f(,le,T,E) _f(lu’m—l’TvE)l (25)

where dC[0,K].
The first integral in Eq. (25) can be computed accurately
as

J dEGr(E) (E - gm)d X [f(/J’m’T’E) _f(IL'Lm—l’T’E)]

—00

+00
= J dEGr(E)(E_ fm)d Xf(Mmst—]sﬁIm’ T» T, TIm,E)'

-0

(26)

Figure 3 shows the poles of f from Eq. (26) for the case p

=23, =3 mkgT, and Tlm=T/ 7. Even though the number of
poles to be summed per every moment equals 28, the number
of points per integration interval Au at which G"(E) needs to
be calculated is 3 because the values of G'(E) at different
poles are reused in computation of the moments at different
intervals. Thus, quf) is computed similarly to Eq. (16), with
the only difference being that G'(Z;) is now replaced by
G/(2)(Z-&,)"

Because matrices gf,’,‘) do not depend on energy, the inte-
grals in the second term of Eq. (25)
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YKE f dE(E—§m)K>< [f(/-Lm’T’E)_f(Mm_l’T’E)]’

(27)

can be computed analytically. Here we provide example so-
lution of this problem for K=2 (the solutions for K>2 are
similar to this). The integrals Y, are nonzero when integer «
is even. For example, assuming Au=2kgT they are

2
Yo=2kgT, Y,= g(kBT)3(1 + ),

Y, = %(kBT)S(?a +1072 +77%). (28)

Then, to satisfy Eq. (25) for d=0,1,2, matrices gf,f) should
be chosen as

Mo = MY,

0 29a
BTN Yy, (29)
M(l)
(1) _ Zm 20h
B =y (29b)
MPY-MOY
gg) om0 Fm —2 (29¢)

~Yi+Y,Y,

The analytic continuation of G%(E) into the upper complex
half-plane is simply

2
Gi(2) =2 [ X (z- )" (30)
k=0
Then Eq. (23) becomes
L M
pneq:EE (Qm_ﬂln)’ (31)
m=1

where
Q, = f - dEG'(E) - 3(E) - GY(E)

X [f(,LLm,T,E) _f(/“Lm—laT’E)l (32)

The integrand in Eq. (32) is now analytic in the upper-half-
plane and can be evaluated through our “pole summation”
algorithm discussed in Secs. II A and II B. The integration
precision is controlled by varying Au, although the condition
Au>kgT should be satisfied. Otherwise the interval size be-
comes smaller than the “overlap” between adjacent intervals
due to the Fermi smear, and further reduction of Au does not
lead to the precision improvement.

The algorithm presented in this section is actually more
computationally expensive than the usually
implemented®74%44 real-axis integration to get p,., since for
every interval one needs to compute the retarded Green func-
tion at three different points instead of one, as shown in Fig.
3. Nonetheless, the benefit of this approach is in systematic
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approximation by exact match of the Green function mo-
ments which can evade insufficiently fine integration grid or,
most importantly, uncontrolled usage®’#3#* of the real-axis
infinitesimal H,,+i7 that leads to serious current noncon-
servation in long devices beyond molecular electronics scale.
For example, a very large system poorly coupled to its con-
tacts may have several sharp peaks within 10 meV interval.
None of the adaptive real-axis integration methods>*3* can
properly account for these peaks if the integration step equals
10 meV, while the moments-matching algorithm has capabil-
ity to capture the contribution from these peaks to the inte-
gral.

The current implementation of moments matching tech-
nique is not perfect, though it is reasonably fast and precise.
Even though our method allowed 1.5 times larger step for the
same integration precision, the test runs on large systems
have shown that it worked twice as slower than the tradi-
tional real-axis integration offset by a small imaginary con-
stant ;7. The slowdown was due to the large number of ma-
trices to be summed and extra operations required on these
matrices.

Another systematic problem of the current implementa-
tion is in the following: when one matches the moments on
just one interval (limited by two sets of vertical points in Fig.
3) and assumes power expansion of the Green function in the
vicinity of the interval center, there is a good chance that
outside the interval (but in the range where limiting Fermi
functions are not small enough) the Green function severely
deviates from its true value (e.g., the imaginary part of the
diagonal elements becomes positive so that the DOS be-
comes negative). For that reason one should be cautious
about expanding G“(E) in power series beyond the first or-
der. Nevertheless, these technical issues do not undermine
the basic idea of local expansion of G%(E) with analytic
functions through moments matching by pole summation.
We believe that it is possible to substantially enhance this
method by using analytic functions other than x" and by ex-
tending the base for moments matching, e.g., to simulta-
neously match moments on one, two and three adjacent in-
tervals. This approach would require more “basis functions”
and will lead to a set of coupled linear equations, which must
be solved for the entire real-axis integration interval simul-
taneously to obtain coefficients for each local expansion of

G%(2).

III. EXAMPLE: FIRST-PRINCIPLES MODELING OF TOP-
GATED GNR-BASED NANOELECTRONIC DEVICES

From the very outset, the discovery of graphene has been
intimately connected to attempts to fabricate carbon-based
planar FETs.® Since FETs produced using micron-size
graphene sheets as channels have poor /,,/1 = 10 ratio, the
pursuit of FETs suitable for digital electronics applications
has shifted toward fabrication of GNRs with large band
gaps!? =0.4 eV. Their band gap can be engineered by trans-
verse quantum confinement effects in the case of AGNR
(where the gap is additionally affected by the increased hop-
ping integral between the p, orbitals on carbon atoms around
the armchair edge caused by slight changes in atomic bond-
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ing length in the presence of edge passivating hydrogen®') or
by staggered sublattice potential arising due to nonzero spin
polarization around zigzag edges of ZGNR.?7-01-64

The very recent experiments'>"!® have demonstrated that
all sub-10-nm-wide GNRs are semiconducting. Since band
gaps due to edge magnetic ordering in ZGNR are easily de-
stroyed at room temperature,®> by finite current under non-
equilibrium bias voltage conditions,?” or by impurities and
vacancies along the edge,** we assume that AGNRs are es-
sential ingredient to introduce sizable band gap in graphene
nanodevices operating at room temperature, as confirmed
also by recent tunneling spectroscopy.®

The fabricated GNRFETSs thus far have utilized metallic
source and drain electrodes where Schottky barrier (SB) is
introduced at the contact between metallic electrode (typi-
cally Pd with high work function) and GNR, so that the
current is modulated by carrier tunneling probability through
SB at contacts. On the other hand, planar structure of
graphene is envisaged to make possible all-graphene elec-
tronic circuits patterned from either a single graphene plane
or multiple planes separated by layers of insulating
material.'?

Any all-graphene circuit concept will require both active
FETs and passive elements for wiring individual circuit ele-
ments. Although ZGNR can be expected to be metallic at
room temperature, the wiring based on them is nontrivial
issue because only few specific ZGNR patterns have close to
ideal conductance and can transmit electron flux without
losses.!” Furthermore, at finite bias voltage ZGNRs can open
a band gap if they are mirror symmetric with respect to the
midplane between the two zigzag edges.?’

A. Three-terminal device setup

Our FET-type device setup, based on the combination of
ZGNR source and drain metallic electrodes and semicon-
ducting AGNR channel in between them, is shown in Fig. 4
The source and drain have different widths and are modeled
as semi-infinite ideal ZGNRs leads. The size of the AGNR
band gap is an oscillating function of the ribbon width. The
width variation causing AGNR to switch between small and
large gaps equals to just a single C-C bond length, which was
found to greatly affect the transfer characteristics (i.e., cur-
rent / vs gate voltage V,, at fixed source-drain bias V) in
the recent study? of several FET concepts with AGNR chan-
nels. Because cutting graphene with atomic precision in or-
der to obtain uniform device performance is currently not an
option, the variable-width AGNR seems to be the simplest
realistic path toward making a short semiconducting frag-
ment. Above the semiconducting ‘“active region” we place a
graphene rectangle, which is assumed to have no electrical
contact with the ZGNR-AGNR-ZGNR structure below it.
This may be achieved by placing boron-nitride insulating
layer in between. In fact, recent experiments have fabricated
graphene devices with a top gate separated from the
graphene layer by an air gap design which does not decrease
the mobility of charge carriers under the gate.®’

We note that the recent analysis?® (using NEGF for simple
p.-orbital tight-binding model that is self-consistently
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FIG. 4. (Color online) Graphical depiction of the atomic struc-
ture of simulated nanodevice composed of two narrow graphene
layers. The lower graphene layer contains two unidirectional
ZGNRs of different width, which act as the source and drain me-
tallic electrodes, sandwiching semiconducting AGNR of variable
width as the FET channel. The top graphene layer plays the role of
a gate electrode, covering all of the AGNR channel region, and has
the shape of a rectangle that is sufficiently large to have negligible
band gap. The interlayer distance is 3.35 A, which corresponds to
the interlayer spacing in graphite (Ref. 66). The hydrogen atoms
(red dots) passivate edges of both layers, whose internal carbon
atoms (blue) form defect free finite-size honeycomb lattice. Dark
and light colored transverse segments, which have variable shape as
one moves from the source to the drain electrode, are used to mark
odd and even slices of the partitioned system. Each slice i
=1,...,§ is described by the Hamiltonian matrix H; ;, all of which
are stored in computer memory together with matrices H;;,; de-
scribing the coupling between adjacent slices i and i+1.

coupled to a three-dimensional Poisson solver for treating
the electrostatics) of dual-gate Schottky barrier GNRFETS,
with uniform width AGNR channels and several different
types of graphene- or nongraphene-based source and drain
electrodes, has singled out ZGNR-AGNR-ZGNR device
concept as an optimal one with high enough 7,/ ratio and
advantageous features of ZGNR metallic contacts.

The usage of wide graphene sheets as the channel of FET
is conceptually difficult because depending on the position of
the Fermi level graphene possesses either electron or hole
conductivity making it impossible to produce regions de-
pleted of mobile charge carriers. At the same time, the con-
cept of GNR devices allows to build both normally-off and
normally-on transistors based solely on the device
geometries.'®!° One of the main benefits of graphene in na-
noelectronics is its one-atom-thickness which leads to very
low parasitic capacitance, and therefore allows terahertz cut-
off frequencies for all-graphene devices and circuits.> So far
both the experiments'® and quantum  transport
simulations®*?> have been focused on GNRFETs whose
channel is long and narrow semiconducting GNR attached to
metallic source and drain (such as Pd) contacts while being
controlled by metallic top-gate shifting the band gap. Al-
though such transistors play an important role in studying
GNR properties, they compromise the main purpose of na-
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noelectronic devices—the speed. The parasitic gate-substrate
or gate-source (drain) capacitances?®3%3! for such hybrid
metal-graphene structure are orders of magnitude higher than
capacitance of the channel, and thus substantially decrease
the transistor speed. Exploring all-graphene nanoelectronic
devices to reach the optimal speed limit is one of the primary
motivations for the design concept shown in Fig. 4.

B. System partitioning and the recursive
Green function algorithm

The retarded Green function matrix G'(E), as the central
NEGF quantity in phase-coherent transport regime which
yields electron density through Eq. (2) and current via Eq.
(4), can be computed by direct matrix inversion in Eq. (3).
However, the computational complexity O(N?) of this opera-
tion makes it virtually impossible for present NEGF-DFT
codes (which typically perform this brute force operation) to
be applied to systems containing large number of atoms.3?
Thus, first-principles simulation of transport in large systems
can be accomplished only if relevant elements of G'(E) can
be obtained via algorithms that scale linearly with increasing
length of assumed quasi-one-dimensional (Q1D) device
geometry.3?

In fact, since only a much smaller submatrix of G’(E)
determines transport properties given by Eq. (4), the recur-
sive Green function algorithms® (in serial or parallel
implementation®) have commonly been used to compute the
submatrix G ; and obtain the transmission properties of me-
soscopic devices.®® They are based on using the Dyson equa-
tion, G-=Gy+G(VGy, to build the Green function slice by
slice, so that the dimensions of the matrices that have to be
inverted are strongly reduced (Gj is the Green function of
some region of the device with one of the leads attached, V
is the hopping matrix between that region and adjacent slice,
and Gy is the Green function of the coupled system lead
+region+slice).

This type of algorithms have also been extende
to obtain other submatrices of G" needed to compute local
quantities within the simulated region, such as Gj; or Gj,
which define the electron density within slice i or spatial
profile of local currents between slices i and i+ 1, respec-
tively. Although it is often considered®® that standard or ex-
tended recursive Green function algorithms can be applied
only to Q1D two-terminal devices, some alternative ap-
proaches which invert smaller matrices than the full device
Hamiltonian H,, to build the Green function of multitermi-
nal nanostructures of arbitrary geometrical shape have also
been introduced recently. %>’

The key issue for a successful inclusion of the recursive
Green function formulas into NEGF-DFT codes is not the
specific set of equations, which is very similar in different
approaches, but the ability to make a consistent partition of a
system of arbitrary shape and with many attached electrodes
into slices described by much smaller matrices H; ;. The full
Hamiltonian matrix can then be written as

d55,57,70—72
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H, H, 0 0 0
: Hi—l,i—l Hi—l,i 0
Hygg= HZ—IJ Hi,i Hi,i+l
: 0 HzT,i+l Hiy i :
cen .o .. HS—l s
0 0 0 Hf , ; Hgg

(33)

since due to the finite range of basis functions in the trans-
port direction the size of the slices can always be chosen so
large that only neighboring ones are coupled through each
other via the hopping matrices H; ;.

An example of the solution to this primarily geometrical
problem is illustrated using the device setup in Fig. 4. Our
algorithm here starts from the bitmap drawing of the
device— converts the image into a finite-size honeycomb
lattice— then attempts to partition the device within a loop
until consistent set of slices is achieved across the whole
device. The final result—a set of slices of nonuniform shape
(in contrast to typical columns of sites orthogonal to the axis
of the device when recursive algorithm is applied to two-
terminal Q1D devices of simple shape’!7>)—is shown in Fig.
4 as dark and light colored segments of the honeycomb lat-
tice. Each slice is described by a matrix H;; containing the
interactions between atoms within the layer i (i=1,...,S).
The size of the matrix H,; is N; X N,, where N; is the total
number of atomic orbitals for all atoms in the slice i. These
matrices are much smaller than H, and are stored in memory
at the beginning of the calculation together with matrices
H;\

Starting from the set of matrices H;; and H; ;,;, we imple-
ment the simplest recursive Green function algorithm aimed
at getting G;; from which we can compute the density matrix
p; of slice i by replacing G” in Eq. (2) with Gj;. The retarded
Green function G;; of each slices is given by

PE)-3IHET. (34

where %/(E) and 35/(E) are the self-energies due to the rest
of the device on the left and on the right, respectively, at-
tached to slice i (I;; is the unit matrix of the same size as
H,)). N

The self-energies 2'(E) generated by the left side of the
device attached to slide i are computed through the recursive
formula which starts from the self-energy of the left semi-
infinite ideal electrode

G?,i(E) = [EIi,i - Hi,i -

2(E-eU)=H), g(E-eU) -Hyy, (39
and proceeds through
LNE) = Hb [EL,;-H,, -2 (E-eU)T" -H,,,
(36a)

S7HE)=H];- [EL,-H,, -3 ()] H, 3,
(36b)
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2%—1,5—1(}5) = Hg—l,s [EXg 5oy — Hg_y 5
=3B Hyy .

Here g;(E) is portion of the retarded Green function of the
isolated lead connecting atoms in the edge principal layer
that is coupled to the extended central region via Hy ;. We
note here that the usual simplification in NEGF-DFT codes is
to treat the extended central region out of equilibrium while
electronic structure of the ideal semi-infinite leads is com-
puted in equilibrium, thereby ignoring the self-consistent re-
sponse of the leads to the current. Although it has been
pointed out”? that this approximation can be incompatible
with asymptotic charge neutrality, this is rarely taken into
account. Instead of assuming that the equilibrium band struc-
ture of the leads is rigidly shifted by the bias voltage
*eV,/2 applied between the macroscopic reservoirs to
which they are attached, we employ FeU; satisfying
eVyl2=eU;>eUr=—-eV, /2 as the shifts of the lead on-
site energies, 2 r(E,V,)=2; p(EFeU;,0). In general
nonequilibrium calculations at finite bias voltage, the poten-
tial eU; g is adjusted after each iteration within the self-
consistency loop if the total charge on slices 1 and S (ob-
tained from Tr p, and Tr pg respectively) is found to deviate
from the neutral state charge.

The same recursion starts from the right semi-infinite
ideal electrode to generate the self-energies Eégi(E), where
the self-energy of the right semi-infinite ideal electrode,

(36¢)

Sp(E—eUg) =Hgyg, - gp(E—eUg) -Hig,,,  (37)

and the Hamiltonian Hy s of the first slice S on the right side
of the extended central region are used to construct the start-
ing equation of the recursion analogous to Eq. (36a).

After the self-consistency is reached, the transmission
T(E,Vy) in Eq. (4) is computed from the submatrix G,
obtained recursively via the Dyson equation by starting from
the known retarded Green function G, [Eq. (34)] of the first
slice on the left,

i1 =[EL;-H,;,; - SEET Hj—u Gy (38)

Thus, the computational complexity of the retarded Green
function evaluation is reduced from O(N?) for the full matrix
inversion to 3N;(S—1)+N:S operations, where N; is the av-
erage number of atoms within the slice i. This means that the
time required to obtain all relevant submatrices G;; and G§
for the NEGF-DFT algorithm scales linearly O(S) with in-
creasing the length of the device (i.e., the number of slices
S).

The recursive Green function algorithm helps to resolve
only one of the two key problems in the application of
NEGF-DFT to large devices. The other one discussed in Sec.
I—numerous sharp peaks in the integrand of p,., that render
real-axis integration nonconvergent—can be solved in prin-
ciple by including the interactions*>*® within the simulated
region capable of washing out the quantum interference ef-
fects (that are, anyhow, seldom observed in devices at room
temperature). For example, the inclusion of electron-electron
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correlation effects within the GW approximation was
demonstrated*® to broaden or remove sharp features in the
NEGFs for test systems (such as a chain of gold atoms).

In the presence of such dephasing processes, one has to
resort to the full NEGF formalism®* whose core quantities
are the retarded G” and the lesser G= Green function de-
scribing the density of available quantum-mechanical states
and how electrons occupy those quantum states, respectively.
Both Green functions can be obtained from the contour-
ordered Green function defined for any two time values that
lie along the Kadanoff-Baym-Keldysh time contour.3* In ad-
dition to the retarded 3., and the lesser 3, . self-energy
due to attached electrodes, the full formalism requires to
compute self-energy functionals due to many-body interac-
tions within the sample, %, and Eii[, while using conserving
approximation® for their expression in terms of G" and G=.

In the phase-coherent transport regime, ¥;,,=0 and X,
=0, so that the lesser self-energy of noninteracting (i.e.,
mean-field or Kohn-Sham) quasiparticles can be expressed
solely in terms of the retarded self-energies of the leads

2 jeads(E) = if (E = )T 1(E) + if (E ~ up)TR(E). (39)
Then the Keldysh equation
G™(E)=G/(E) - [2i0a(E) + X (E)]- GU(E),  (40)

allows to eliminate G= as independent NEGF and express
the corresponding density matrix

p=—— f JEG=(E), (41)
2171

using only G"(E) and X4 (E), as shown explicitly by Eq.
(2).

On the other hand, even the simplest phenomenological
NEGF models of dephasing, such as ‘“momentum-
conserving” choice ¥;,(E)=dG'(E) and ;. (E)=dG~(E) (d
measures the “dephasing strength”) proposed in Ref. 47, re-
quire to solve Egs. (3) and (40) as a system of coupled ma-
trix equations involving full size matrices in the Hilbert
space of the simulated device region. For example, in the
case of the dephasing model of Ref. 47, this means iterative
solving of Eq. (3), with G{(E)=[E-H-3%{ ,(E)]"" as the
initial guess, and then using converged G'(E) to solve Eq.
(40) as the Sylvester equation of matrix algebra. Obviously,
in this case the sparse nature of H matrix in Eq. (33) and the
corresponding recursive Green function formulas become ir-
relevant for reducing the time it takes to obtain all necessary
NEGFs in a single step of the self-consistent loop [Eq. (1)].

More realistic description of interactions with the ex-
tended central region is far more computationally
demanding.*>* Thus, the only route toward first-principles
modeling of transport through large devices is to remain
within the phase-coherent transport regime and develop al-
gorithms that can resolve problems in the convergence of
integration in p,., along the real axis, as discussed in Sec.
I C or by Refs. 53 and 54.
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C. Quasinonequilibrium model

The DFT part of our simulation, which constructs the
Hamiltonian of the central region as an input for NEGF post-
processing to obtain the device transport properties, is per-
formed by using the SC-EDTB model.’>® This model ac-
counts for atomic polarization and interatomic charge
transfer in a standard DFT-like fashion while making it pos-
sible to use a minimal basis set of four Gaussian orbitals per
carbon and one orbital per hydrogen atom. The usage of such
minimal basis set allows us to reduce the size of matrices H, ;
and H; ;, discussed in Sec. III B without loosing any of the
important aspects of ab initio input about carbon-hydrogen
systems. This makes SC-EDTB highly advantageous when
treating systems with large number of atoms.

Conceptually, SC-EDTB can be viewed as the pseudopo-
tential DFT scheme with each atom having its own atomic
orbital basis set adjustable to the local atomic environment
around this atom. It is a hybrid of the non-self-consistent
environment-dependent  tight-binding model’* and a
Gaussian-based DFT scheme. Such adaptive behavior ad-
equately compensates for the low precision of the minimal
orthogonal basis set. In practice, SC-EDTB implements the
environment dependence as the parametrization of Hamil-
tonian matrix elements with respect to the atomic environ-
ment, rather than the parametrization of the atomic basis set.
For example, the parametrized part of Hamiltonian matrix
elements for the atom near the edge of the nanoribbon will
be different from the respective matrix elements in the
middle of the strip. Similarly, the in-plane Hamiltonian ma-
trix elements for a single graphene layer will be different
from the respective matrix elements in a graphene bilayer.

The SC-EDTB Hamiltonian matrix elements are the sums
of parametrized adaptive “TB-like” and nonadaptive “true
DFT” contributions. The former mainly accounts for the co-
valent bonding, while the latter describes interatomic charge
transfer, atomic dipole polarization, and on-site variation of
exchange potential. The extensive comparison of SC-EDTB
with large basis set DFT calculations indicates that SC-
EDTB produces more precise and transferable results than
minimal basis set pseudopotential DFT schemes. At the same
time, SC-EDTB is faster than minimal basis set pseudopo-
tential DFT due to: (i) faster computation of matrix elements;
(ii) unit overlap matrix (i.e., orthogonal basis set); and (iii)
smaller number of components used for the description of
electron density (SC-EDTB uses ten independent compo-
nents, s2, sp,, SPys SP2 pi, pi, pf, PiPy» PPz PyP-»> tO describe
the electron density at a given carbon atom). This allows us
not only to capture the interatomic charge transfer, but also
to account for the dipole polarization.

The compact description of electron density makes pos-
sible efficient combination of SC-EDTB with convergence
acceleration schemes for both equilibrium and nonequilib-
rium cases, as discussed in the Appendix. The more detailed
specification of electron density provided by standard DFT
codes in local density (or some other) approximation® will
decrease the computation efficiency, but will not affect the
simulation of graphene devices whose operation is based on
charge transfer at the scale larger than carbon-carbon bond
length. To accommodate systems composed of tens of thou-
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sands atoms, the SC-EDTB part of our NEGF-DFT compu-
tational code also includes the possibility of multipole ex-
pansion of Coulomb potential and parallelization on
distributed/shared memory systems.

The simulations of the gate voltage effect for the device in
Fig. 4, presented in Sec. III D, were performed in the linear
response regime where the bias voltage is vanishingly small,
wy—pugr—0 (entailing eU; —eUgr—0). Despite 5 A cutoff
radius for the orbitals used in SC-EDTB, the coupling
Hamiltonian matrix elements between the top and the bottom
graphene layers of the system depicted in Fig. 4 have to be
masked with zeros to mimic the presence of a real insulating
layer in between. This causes the nonequilibrium density ma-
trix (2) in the presence of the nonzero gate voltage V,, to
evolve into two equilibrium integrals [Eq. (6)],

. 1 (™
Py Ve D= J dE Im[G"(E)]f(1.T.E)

1
-— J dE Im[Gly (E) (i + eV, T.E)

—o0

Each of these two integrals is evaluated through our “pole
summation” algorithm encoded by the formula (16). Here
Gy refers to the Green function matrix Eq. (3) computed
for the whole device, but whose all elements associated with
atoms in the lower source-channel-drain layer are masked
with zeros. That is, only those matrix elements which corre-
spond to the gate layer are allowed to be nonzero.

We assume that the self-consistency of the recursive
Green function algorithm+Broyden mixing scheme (see Ap-
pendix) is reached when [n®‘—n'"|< 107>, where the ele-

ments of the electron density vector n are extracted from the
. . out in .
diagonal blocks of the corresponding pquasi and Pquasi matri-

ces [as discussed in Sec. III B, only thei;eaiagonal blocks are
computed from recursively generated submatrices G ,(E) of
the retarded Green function].

D. Results and discussion

We first assume zero gate voltage and plot in Fig. 5 the
self-consistent Hartree potential®® computed via the Poisson
equation with net charge density due to charging of carbon
atoms as the source term. The potential profiles are evaluated
within the planes that are parallel to two graphene layers in
Fig. 4 and positioned in the region between them. The inho-
mogeneous profiles are caused by charge transfer between
hydrogen and carbon atoms. Furthermore, it is important to
emphasize that there is approximately 100 meV difference
between the Fermi levels of the wide pyiq. and narrow
Muarrow SOUrce and drain ZGNR electrodes, respectively, in
the bottom graphene layer of the device in Fig. 4. This is
caused by different ratios of carbon atoms to hydrogen atoms
passivating the zigzag edges in GNRs of different widths.
That is, the edge hydrogen atoms effectively dope the
nanoribbon?%-?2 where the level of doping depends on its size
and geometry. To account for this, the equilibrium Fermi
level of the whole setup p=(tyiget Mnarrow)/2 used in Eq.
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(42) is assumed to be the average of . and narrow
Maarow- SUch compensation of the difference in the Fermi
levels requires a small built-in electric field in our model.
Room-temperature (7=300 K) operation is assumed in all
figures in this section.

Then we apply voltage eV,,=1 €V to the gate electrode
in Fig. 6 and plot the full three-dimensional spatial profile of
the electric potential. Further increase in the gate voltage to
eV,=3 eV leads to potential (within a geometrical plane in
between two graphene layers) shown in Fig. 7. The self-
consistent atomistic level simulation captures the potential
variation in the transverse direction of the GNRs, as well as
possible modifications of the band structure of GNRs with
increasing gate voltage.?830-3!1

In both figures, we find that the chosen portion of metallic
ZGNR electrodes attached to the AGNR channel to form the
“extended central region,”***"” encompassing =7000 car-
bon and hydrogen atoms for self-consistent electron density
and potential calculations, is actually not large enough (de-
spite many ZGNR supercells included into the extended cen-
tral region) to completely screen the effect of the applied
electric field via the top gate electrode. This is signified by
the color of the Coulomb potential at the boundaries (marked
by horizontal white lines in Fig. 7) of the “extended central
region” not being identical to the color of the uniform poten-
tial along the semi-infinite leads. The total uncompensated
charge at the boundary is approximately 0.03 e for eV,
=1 eV and 0.07 e for eV,=3 eV.

Another feature conspicuous in Fig. 7 is that the on-site
potential shift experienced by carbon atoms in the lower
layer is much smaller than expected from the applied bias
voltage. This unusual screening capability of the insulating
AGNR channel can be attributed to the presence of short
segments of metallic AGNR due to either particular width of
such segments (we do not relax the coordinates and edge
bonds that would ensure that all three classes of AGNRs,
defined by their width, are insulating®') or doping by evanes-
cent modes” that decay from ZGNR electrodes into AGNR
channel thereby generating metal induced gap states’® (local-
ized at the ZGNR|AGNR interface).?® This is also reflected
in the conductance of our device—to shift the band gap of
variable-width AGNR by 0.5 eV and bring it into single
channel conducting regime demands a rater large gate volt-
age eV, ;=3 eV (when compared to eV = half-the-band-
gap required to turn uniform semiconducting AGNR into a
single channel conductor?®), as shown by the source-drain
conductance computed as the function of V, in Figs.
8(b)-8(d).

The metallic behavior of ZGNR electrodes is character-
ized by the nonzero density of states and finite (zero tem-
perature) conductance at the Fermi level Ep. We note that in
simple nearest-neighbor tight-binding models'® the conduc-
tance of infinite ZGNR around the charge neutral (Dirac)
point E;=0 is quantized G=G, (GQ=2e2/h is the conduc-
tance quantum for spin-degenerate transport) due to a single
open conducting channel (i.e., transverse propagating mode)
defined by the overlap of edge-localized wave functions.>!”
On the other hand, in DFT description (that can be mimicked
by single p_-orbital tight-binding models which include third
nearest-neighbor hopping'’) more complicated subband
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FIG. 5. (Color online) Contour plot of the Hartree potential for zero applied gate voltage (V,,=0 V) in the planes which are 0.7 A (left
panel) and 0.5X3.35 A (right panel) above the lower graphene layer of the system depicted in Fig. 4. White horizontal lines in the ZGNR
electrode regions mark the boundaries of the extended central region “AGNR channel +portion of ZGNR electrodes” composed of =7000
atoms (for which the retarded Green function is evaluated to obtain electron density and electric potential through the self-consistent loop).

structure of ZGNR leads to three open conducting channels'’
around Ep=0 and G=3G, quantized conductance for semi-
infinite source and drain ZGNR electrodes. This is confirmed
in the context of our NEGF-DFT approach by Fig. 8(a).

Comparing Fig. 8(a) with Fig. 8(b), which are both ob-
tained at V, =0 V, highlights the importance of self-
consistent electron density computation, even in the absence
of gate voltage effects. We find a marked difference in two
panels between the position of the gap region [over which
the transmission function T(E,0) in Eq. (5) is zero] and con-
ductance oscillations outside of it. The conductance in Fig.
8(a) was obtained without computing charge transfer effects,
and it could be reproduced by popular non-self-consistent
tight-binding models!”'® without resorting to full NEGF-
DFT formalism. The local charge transfer is due to the po-
larization of C-H bonds and slight system-wide charge redis-
tribution is due to the different carbon to hydrogen ratios in
different portions of the system. Both effects induce the
change in position of the Fermi level with respect to the band
gap and cannot be neglected when computing the transport
properties of realistic nanodevices.

IV. CONCLUDING REMARKS

The modeling of realistic multiterminal graphene nano-
electronic devices requires quantum transport methods that
can capture effects of its highly unusual electronic
properties®!” and their dependence on detailed device
geometry,'®1? as well as charge transfer (in equilibrium) and
charge redistribution (out of equilibrium) effects on atomistic
scale. While quantum transport approaches based on simple
predefined Hamiltonians'® cannot handle all of these issues,
the NEGF-DFT framework, which generates the self-
consistent Hamiltonian of the device prior to the calculation
of conductance or I-V characteristics, offers a proper meth-
odology for first-principles modeling of electron transport
involving accurate quantum-chemical description of atomic
scale geometry.

However, NEGF-DFT simulations thus far have been
limited?? to rather small systems, such as short molecules
connected to metallic electrodes. Here we address several
obvious*? and more subtle (Sec. I) impediments that have to
be resolved to make possible the application of NEGF-DFT
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FIG. 6. (Color online) Contour plot of the Hartree potential in
the plane 0.2 A above the lower graphene layer when the applied
gate voltage is eV, ;=1 eV. The semiconducting region is shifted by
approximately 0.35 eV. The potential spikes pointing downward
correspond to the hydrogen atoms. Positive potential spikes associ-
ated with carbon atoms in the C-H dipole pairs are truncated to
make a clear view of the potential inside the conducting channel.
Note that the potential axis points downward.

codes to devices containing many thousand atoms: (i) com-
putational complexity of the retarded Green function calcu-
lation, as the main time limiting part of the simulation when
full Hamiltonian matrix is inverted, should scale linearly
with the system size; (ii) integration of NEGFs to get the
equilibrium and nonequilibrium part of the density matrix
has to be performed in a way (especially in the case of non-
equilibrium contribution) which ensures convergence despite
sharp peaks (due to assumed phase-coherent transport of
noninteracting quasiparticles) along the real axis whose num-
ber increases substantially in large systems; and (iii) the con-
vergence of the self-consistent loop, which repeatedly evalu-
ates (i) and (ii), should be accelerated with proper mixing
scheme of previous iterative steps that is compatible with
solution of problems in (i) and (ii).

The algorithms presented here extend the NEGF-DFT
methodology to systems containing large number of atoms
through a combination of

(1) the “pole summation™ algorithm for the exact integra-
tion of the retarded Green function in the expression for the
equilibrium part of the density matrix offers an alternative to
standard numerical contour integration by replacing the
Fermi function f(E) with the analytic function f(E), which
coincides with f(E) inside the integration range along the
real axis but decays exponentially in the upper complex half-
plane. Only a finite number N, of its poles, which can be
found analytically, has non-negligible residues, so that
peqzlmEj-V:Pf‘eajG’(Zj) where «; are scalars given by simple
analytical expressions in Eq. (16). The typical value of Ny,
for valence electrons at room temperature is 80, and it in-
creases with the temperature decrease with an approximate
rate of 40 extra poles per order of magnitude in temperature
reduction.

(2) Possible application of the “pole summation” algo-
rithm to tackle the problem of difficult-to-converge integra-
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FIG. 7. (Color online) Contour plot of the Hartree potential for
the applied gate voltage eV,,=3 €V in the plane 0.7 A above the
lower graphene layer. White horizontal lines around the ZGNR
electrodes mark the boundaries of the extended central region
“AGNR channel+portion of ZGNR electrodes” composed of
=7000 atoms.

tion of NEGFs along the real-axis (due to numerous sharp
peaks in the integrand which would be impossible to locate
and handle individually>>>* for devices contains large num-
ber of atoms) to obtain p,, after its nonanalytic integrand in
the entire complex plane is approximated with an analytic
function in the upper complex plane, so that the same type of
summation can be performed as in the case of p., integral.

(3) The recursive Green function formulas which, assum-
ing proper geometrical decomposition of the lattice of the
device into slices of irregular shape for arbitrary nanostruc-
ture geometry, makes it possible to reduce scaling of the
required computing time from O(N?) for the full Hamil-
tonian matrix inversion in the single iteration of the self-
consistent loop to linear scaling O(S) [S is the number of
slices in the transport direction] of the computation of only
the diagonal blocks of the retarded Green function that yield
the electron density within the slice.

In the case of equilibrium or quasiequilibrium (such as
generated by nonzero gate voltage and zero or linear re-
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FIG. 8. (Color online) The non-self-consistent (a) and self-
consistent (b)—(d) source-drain conductance (at linear response bias
voltage V) of the nanodevice depicted in Fig. 4 as a function of
energy. The conductances are obtained in the absence (a), (b) or
presence (c), (d) of the gate voltage V,,, where charge redistribution
is computed self-consistently in all three cases (b)—(d) [unlike in
(a)]. The solid and dashed rectangular lines in panel (a) show the
conductance quantization of the infinite source (wide nanoribbon,
solid line) and drain (narrow nanoribbon, dashed line) ZGNR elec-
trodes, respectively. The equilibrium Fermi level in the case of un-
biased gate corresponds to E—Er=0. The Fermi level of the source
and drain electrodes in panels (a)—(d) corresponds to E—E=0.

sponse bias voltage) situations, we additionally accelerate
convergence of the self-consistent loop for the density matrix
by using the modified Broyden scheme discussed in Appen-
dix, which is compatible with the recursive Green function
algorithm and mixes input and output electron density from
all previous iterations to generate input density for the next
iteration step.

We illustrate the numerical efficiency of the combination
of these algorithms for NEGF part of the calculation by in-
tegrating it with the DFT code (based on the minimal basis
set—four localized orbitals per carbon atom and one per
hydrogen—tailored for carbon-hydrogen systems) to simu-
late gate voltage effects in all-graphene FET-type device.
Our simulated ZGNR |variable-width-AGNR|ZGNR device
is composed of =7000 atoms and employs AGNR of vari-
able width (kept below 10 nm) as a realistic semiconductor
channel accessible to present nanofabrication
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technology.'>”!> The device does not require atomic preci-

sion in controlling the width and the corresponding band gap
when uniform sub-10-nm wide AGNR are used, while ex-
ploiting advantageous®> ZGNR source and drain electrodes.
We also use square-shaped gate electrode covering the chan-
nel which is made of graphene as well. The self-consistent
evaluation of the electron density and Coulomb potential is
required to capture inhomogeneous charge distribution and
modification of the GNR band structure with increasing gate
voltage.?$3031 This reveals that rather large gate voltage is
required to shift the band gap of variable-width AGNR chan-
nel and bring this type of top-gated GNRFET into a window
of single open transverse propagating mode with low scatter-
ing and heat dissipation.

The computation of self-consistent electron density and
electrostatic potential, as the crucial aspect of NEGF-DFT
approach to quantum transport modeling, is indispensable to
properly take into account gate voltage effects or to ensure
the gauge invariance”® of the I-V characteristics in far from
equilibrium transport.”’ In addition, we also demonstrate no-
table difference between the zero-bias transmission (i.e., lin-
ear response conductance) of non-self-consistent and self-
consistent modeling. This can be attributed to charge transfer
effects between edge passivating hydrogen atoms and carbon
atoms, where such edge doping also affects the position of
the Fermi level of isolated GNRs of different size and geom-
etry.
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APPENDIX: BROYDEN MIXING SCHEME FOR
CONVERGENCE ACCELERATION OF THE
SELF-CONSISTENT LOOP

The recursive Green function algorithm discussed in Sec.
Il B drastically reduces the computational complexity of a
single iteration step within the self-consistent loop [Eq. (1)].
Another important ingredient of algorithms that can handle
systems with large number of atoms is to combine the recur-
sive techniques with the convergence acceleration scheme
based on proper mixing of quantities found in previous steps
to produce the input for the next step.

The simplest mixing scheme takes certain fraction & of
the output electron density n’'" from the previous step m and
the remaining fraction (1-¢) from the corresponding input
n, to produce input for the next step, n,,,=(1—¢&)n,
+en". Finding the optimal value for the mixing parameter,
typically € ~0.1-0.01, depends on the nature of the system
(such as, insulating vs metallic or isolated vs attached to
semi-infinite leads). This can require few thousand iteration
steps to satisfy the convergence criterion [n®"'~n'[| <107
we employ in our simulation.

The more sophisticated mixing schemes employ Pulay*
or Broyden’”"7® algorithms to mix several previous steps,
where the quantities mixed can be the density matrix or
Hamiltonian and Green functions® (which can be more effi-
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cient for open multiterminal systems where the central re-
gion does not have a fixed number of electrons). For a small
bias voltage, the self-consistency can be achieved by apply-
ing the Broyden convergence acceleration method which has
two major advantages. First, the modified second Broyden
method’®" is compatible with the recursive Green function
method discussed in Sec. III B. Second, the Broyden method
adds O(N) extra operations, so that the single iteration is not
slowed down. However, the reduction of the number of it-
erations achieved by the Broyden method is appreciable.

The Broyden method works well when the correlation be-
tween the electron density and the potential is local, i.e.,
when the local potential distortion results in a local self-
consistent density change. On the other hand, in the case of
nonlocal correlations the Broyden method performance rap-
idly deteriorates. The nonequilibrium electron density in the
coherent ballistic approximation constitutes the perfect ex-
ample when the Broyden method fails. The reason for this is
that electron-potential correlations becomes completely
nonlocal—the change of the potential at one contact can shut
off the electron flux through the entire system and cause the
system-wide electron density redistribution. Thus, in far-
from-equilibrium cases other mixing schemes have to be
used.?”7

In particular, the modified second Broyden metho
compatible with the recursive Green function method dis-
cussed in Sec. III B, and makes it possible to reduce the
number of iteration steps to the order of ~10. In this scheme,

d78’79 is

PHYSICAL REVIEW B 81, 155450 (2010)

an input electron density for iteration m+1 is constructed
from the set of input and output densities generated in all
previous iterations.

m+l =

‘ . ,
n" n;';—sFm—z‘gwj-[cbj] -F,, (Ala)
i

out in
m= nm - nm»

F (A1b)

i-1

Wi = - S(Fi_ F[—l) + ni-n— n;il - E Wj * [¢J]T‘ (Fl - Fi—l)’
j=2

(Alc)

T
(@] = (Fi~Fi-1) . (A1d)
(F;—F_)"- (F;,—F;_y)
Here ni::, n;m, F,. W, and (I)j comprise a relatively small set
of vectors to be stored in computer memory. The compatibil-
ity of this modified Broyden scheme with the recursive
Green function algorithm of Sec. III B stems from the fact
that only diagonal blocks of G, required to construct vectors
in Eq. (A1), are computed recursively without knowing the
full Green function needed in some other mixing

schemes.?”#
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